Electrospark Method in Galvanic Wastewater Treatment for Heavy Metal Removal

Author:

Petrov Oleksandr,Petrichenko Sergei,Yushchishina AnnaORCID,Mitryasova OlenaORCID,Pohrebennyk Volodymyr

Abstract

The objective of this research is to improve water treatment use of the electric spark method. Studies on the treatment of multicomponent galvanic effluent by the electric spark method using metal loading (Fe, Al) and low-voltage (up to 1000 V) equipment have been carried out. The factors that have the largest influence on the degree of galvanic wastewaters purification are the conditions and parameters of the discharge pulse—an efficiency of approximately 0.8–0.85 has a specific energy, which at moderate concentrations of pollutants can be less than 65 kJ/dm3 (18 kWh/m3)—and the metal loading height. Other variable technological parameters can serve either as scaling tools or as methods for regulating the operation of electrical equipment. The research shows that the degree of purification depends on the specific energy and the height of the metal loading of the reactor, and it weakly depends on the pulse energy and the speed of its input. The concentrations of heavy metals (Zn2+, Cr6++Cr3+, Cu2+) in the treated water are significantly lower than their maximal permissible concentrations. The electric spark method allows us to achieve highly efficient results of wastewater treatment from heavy metals.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

1. Water quality indices used for surface water vulnerability assessment;Bharti;Int. J. Environ. Sci.,2011

2. New trends in removing heavy metals from industrial wastewater

3. Features of Heavy Metals Accumulation in Bottom Sediments of the Southern Bug Hydroecosystem

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3