Understanding Indigenous Farming Systems in Response to Climate Change: An Investigation into Soil Erosion in the Mountainous Regions of Central Vietnam

Author:

Huynh Chuong VanORCID,Pham Tung GiaORCID,Nguyen Tan QuangORCID,Nguyen Linh Hoang Khanh,Tran Phuong Thi,Le Quy Ngoc Phuong,Nguyen Mai Thi HongORCID

Abstract

Soil erosion is a considerable concern in the upland areas of Central Vietnam. This situation is most serious in regions, where the terrain is sloped and subjected to heavy rainfall. Our research was conducted in a mountainous area, belonging to Central Vietnam, the area of Song Kon commune in the Dong Giang district. The objective of this study is first to estimate the impact of soil erosion risk in these areas, and second to assess the capacity of farming systems which are based on indigenous knowledge (IK) to respond to soil erosion. Our data were collected by Participatory Rural Appraisal (PRA) and processed using Geographical Information System (GIS) methods. We then interpreted this research using the Universal Soil Loss Equation (USLE) in order to calculate the soil erosion rate. The Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) were also used as measurements to compare the difference of land surface covers between different farming systems. The results showed that the lowest soil erosion rate was found in the narrow valley regions, which are populated by both agricultural and residential areas. On the other hand, soil erosion was extremely high in the more northerly quadrant of our research area. Our findings also indicate that local farmers are highly aware of soil erosion, which has positively influenced the adoption of adaptation measures (AMs) in their agricultural activities. The most common AMs are as follows: changes in cropping patterns, the adjustments of their planting calendars, the use of native varieties, and intercropping methods. These AMs are mediated by the cultural observances of the local ethnic minority peoples in relation to their IK. We have concluded that when farmers apply IK in their farming systems, the soil erosion rate tends to decrease as compared with non-indigenous knowledge (NIK) practices. We hope to bring a better understanding of the processes that shape farmers’ AMs and thereby to develop well-targeted adaptation policies that can then be applied at the local level. Our findings may be instrumental in future adaptation planning and policies in regard to climate change, and that they will help to increase awareness not only in matters of the soil erosion but also in other interconnected aspects of climate change in these areas.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference105 articles.

1. Summary for Policymakers;Jarraud,2012

2. Sending the Right Bill to the Right People: Climate Change, Environmental Degradation, and Social Vulnerabilities in Central Vietnam

3. The Impact of Sea Level Rise on Developing Countries: A Comparative Analysis,2007

4. Community-based climate change adaptation in Vietnam: Inter-linkages of environment, disaster, and human security;Shaw,2006

5. The Social Dimensions of Adaptation of Climate Change in Vietnam: The Social Dimensions of Adaptation of Climate Change in Vietnam;McElwee,2010

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3