Ecotoxicological Assessment of a Glyphosate-Based Herbicide in Cover Plants: Medicago sativa L. as a Model Species

Author:

Fernandes Beatriz,Soares CristianoORCID,Braga Cláudia,Rebotim Ana,Ferreira Rafael,Ferreira Joana,Fidalgo FernandaORCID,Pereira RuthORCID,Cachada AnabelaORCID

Abstract

Despite the several innovations that have been incorporated in agriculture, the use of herbicides, especially glyphosate (GLY), is still the major tool for weed control. Although this herbicide has a notable worldwide representation, concerns about its environmental safety were recently raised, with a lot of divergence between studies on its non-target toxicity. Therefore, it is of utmost importance to understand the risks of this herbicide to non-target plants, including cover crop species, which have a crucial role in maintaining agroecosystems functions and in preventing soil erosion. Thus, this work aims to evaluate the growth and physiological responses of a cover plant species (Medicago sativa L.) exposed to increasing concentrations of a GLY-based herbicide (GBH), particularly focusing on the oxidative metabolism. The growth of roots and shoots was affected, being this effect accompanied by a rise of lipid peroxidation, suggesting the occurrence of oxidative stress, and by an activation of the antioxidant (AOX) system. Indeed, the results showed that adverse effects are visible at active ingredient concentrations of 8.0 mg kg−1, with the lowest EC50 being 12 mg kg−1, showing that GBH-contaminated soils may pose a risk to the survival of non-target plants in the most contaminated areas. Overall, these findings proved that GBH greatly impairs the growth of a non-target plant, strengthening the need of additional studies to unravel the real risks associated with the over usage of this pesticide, since there is an evident lack of studies performed with contaminated soils.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3