Artificial Intelligence-Based Model for the Prediction of Dynamic Modulus of Stone Mastic Asphalt

Author:

Le Thanh-Hai,Nguyen Hoang-Long,Pham Binh ThaiORCID,Nguyen May HuuORCID,Pham Cao-Thang,Nguyen Ngoc-Lan,Le Tien-ThinhORCID,Ly Hai-BangORCID

Abstract

Stone Mastic Asphalt (SMA) is a tough, stable, rut-resistant mixture that takes advantage of the stone-to-stone contact to provide strength and durability for the material. Besides, the warm mix asphalt (WMA) technology allows reducing emissions and energy consumption by reducing the production temperature by 30–50 °C, compared to conventional hot mix asphalt technology (HMA). The dynamic modulus |E*| has been acknowledged as a vital material property in the mechanistic-empirical design and analysis and further reflects the strains and displacements of such layered pavement structures. The objective of this study is twofold, aiming at favoring the potential use of SMA with WMA technique. To this aim, first, laboratory tests were conducted to compare the performance of SMA and HMA through the dynamic modulus. Second, an advanced hybrid artificial intelligence technique to accurately predict the dynamic modulus of asphalt mixtures was developed. This hybrid model (ANN-TLBO) was based on an Artificial Neural Network (ANN) algorithm and Teaching Learning Based Optimization (TLBO) technique. A database containing the as-obtained experimental tests (96 data) was used for the development and assessment of the ANN-TLBO model. The experimental results showed that SMA mixtures exhibited higher values of the dynamic modulus |E*| than HMA, and the WMA technology increased the dynamic modulus values compared with the hot technology. Furthermore, the proposed hybrid algorithm could successfully predict the dynamic modulus with remarkable values of R2 of 0.989 and 0.985 for the training and testing datasets, respectively. Lastly, the effects of temperature and frequency on the dynamic modulus were evaluated and discussed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3