An Enhanced Genetic Algorithm for Parameter Estimation of Sinusoidal Signals

Author:

Jiang ChaoORCID,Serrao Pruthvi,Liu Mingjie,Cho ChongduORCID

Abstract

Estimating the parameters of sinusoidal signals is a fundamental problem in signal processing and in time-series analysis. Although various genetic algorithms and their hybrids have been introduced to the field, the problems pertaining to complex implementation, premature convergence, and accuracy are still unsolved. To overcome these drawbacks, an enhanced genetic algorithm (EGA) based on biological evolutionary and mathematical ecological theory is originally proposed in this study; wherein a prejudice-free selection mechanism, a two-step crossover (TSC), and an adaptive mutation strategy are designed to preserve population diversity and to maintain a synergy between convergence and search ability. In order to validate the performance, benchmark function-based studies are conducted, and the results are compared with that of the standard genetic algorithm (SGA), the particle swarm optimization (PSO), the cuckoo search (CS), and the cloud model-based genetic algorithm (CMGA). The results reveal that the proposed method outperforms the others in terms of accuracy, convergence speed, and robustness against noise. Finally, parameter estimations of real-life sinusoidal signals are performed, validating the superiority and effectiveness of the proposed method.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3