Development of a Deep Learning-Based Epiglottis Obstruction Ratio Calculation System

Author:

Su Hsing-Hao123ORCID,Lu Chuan-Pin4

Affiliation:

1. Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan

2. Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan

3. Department of Pharmacy and Master Program, College of Pharmacy & Health Care, Tajen University, Pingtung 90741, Taiwan

4. Department of Information and Communication Engineering, Chaoyang University of Technology, Taichung 41349, Taiwan

Abstract

Surgeons determine the treatment method for patients with epiglottis obstruction based on its severity, often by estimating the obstruction severity (using three obstruction degrees) from the examination of drug-induced sleep endoscopy images. However, the use of obstruction degrees is inadequate and fails to correspond to changes in respiratory airflow. Current artificial intelligence image technologies can effectively address this issue. To enhance the accuracy of epiglottis obstruction assessment and replace obstruction degrees with obstruction ratios, this study developed a computer vision system with a deep learning-based method for calculating epiglottis obstruction ratios. The system employs a convolutional neural network, the YOLOv4 model, for epiglottis cartilage localization, a color quantization method to transform pixels into regions, and a region puzzle algorithm to calculate the range of a patient’s epiglottis airway. This information is then utilized to compute the obstruction ratio of the patient’s epiglottis site. Additionally, this system integrates web-based and PC-based programming technologies to realize its functionalities. Through experimental validation, this system was found to autonomously calculate obstruction ratios with a precision of 0.1% (ranging from 0% to 100%). It presents epiglottis obstruction levels as continuous data, providing crucial diagnostic insight for surgeons to assess the severity of epiglottis obstruction in patients.

Funder

Kaohsiung Veterans General Hospital, Taiwan,

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3