Design Analysis of an Optimal Microgrid System for the Integration of Renewable Energy Sources at a University Campus

Author:

AlKassem AbdulrahmanORCID,Draou Azeddine,Alamri Abdullah,Alharbi Hisham

Abstract

The integration of renewable energy sources (RESs) is a strategic goal in Saudi Arabia. The energy source diversification plan comprises the penetration of various technologies, including solar photovoltaic (PV) and wind energy. In this research, an optimal microgrid system design is proposed and analyzed at the Islamic University of Madinah. The research intends to facilitate the decision-making process in the incorporation of RESs in Saudi universities. A pilot project has been established at the Faculty of Engineering and the measured load profile has been incorporated. Three alternatives are investigated, and their technical and economic performance is determined (i.e., PV system, wind system, and hybrid system). To enhance the accuracy of the simulated models, on-the-ground weather data have been utilized to formulate a typical meteorological year profile. The results demonstrate that a PV system of 1.5 MW installed capacity can cover up to 3.03% of the university’s annual electrical consumption, with a levelized cost of energy (LCOE) of 0.051 USD/kWh. The PV alternative can generate annual energy of 2.68 GWh with a capacity factor of 20.2% and a simple payback period of 18.6 years. The wind energy system has a capacity factor of 1.1 MW and yields a higher ratio of energy production to installed capacity, owing to a higher capacity factor at 29.5%, and annual energy of 2.71 GWh. However, due to the higher initial cost and insufficiency of wind resources at the proposed location, this wind energy alternative results in higher LCOE at 0.064 USD/kWh and a simple payback period of 23.6 years. The hybrid alternative facilitates the integration of diverse RESs. It has a capacity factor of 1.37 MW, leading to an annual generation of 3.27 GWh and a renewable fraction of 3.7%. The LCOE of the hybrid option is determined to be 0.061 USD/kWh and the simple payback period at 20.7 years. All alternatives help in the reduction of carbon dioxide (CO2), sulfur dioxide (SO2), and nitric oxide (NOx) between 0.11 million kg and 54.6 million kg annually. Each of the systems can provide opportunities at the technical, economic, and environmental levels. The implications of this research facilitate Saudi universities in supporting the integration of RESs, considering the strategic goals of Saudi Arabia.

Funder

Deputyship for Research & Innovation, Ministry if Education in Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3