Barkhausen Noise as a Reliable Tool for Sustainable Automotive Production

Author:

Kubjatko Tibor,Mičieta Branislav,Čilliková MáriaORCID,Neslušan MiroslavORCID,Mičietová Anna

Abstract

This paper deals with the sustainable production of components in the automotive industry, with the focus on the nondestructive evaluation of components after plasma nitridation via the Barkhausen noise technique. This study investigates the influence of tool wear on surface state after turning, and the consecutive plasma nitriding process. Moreover, position in the nitriding chamber and the corresponding heterogeneity of components is investigated as well. The results of experiments indicate that an increasing mechanical and thermal load due to flank wear and the associated process dynamics negatively affects the heterogeneity of the surface state after turning, and consecutive nitriding in terms of Barkhausen noise emission. Moreover, it was found that the conditions in the chamber during the nitriding process vary and, especially near the venting system, the temperature is slightly lower, such that some components are found to be unacceptable as well. The study also unwraps the contribution of the diffusion and compound layers with respect to MBN and discusses the contribution of the MBN pulses of different frequencies. The pinning strength of nitrides is indicated with respect to their size and the related thickness of DWs. Finally, this study clearly demonstrates how the MBN technique can be employed for the monitoring nitrided components and the corresponding optimisation of manufacturing cycles.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3