Modelling Land Use and Land Cover in the Transboundary Mono River Catchment of Togo and Benin Using Markov Chain and Stakeholder’s Perspectives

Author:

Thiam SophieORCID,Salas Eric Ariel L.ORCID,Hounguè Nina RholanORCID,Almoradie Adrian Delos Santos,Verleysdonk SarahORCID,Adounkpe Julien G.,Komi Kossi

Abstract

Integrating both modeling approach and stakeholders’ perspectives to derive past and future trends of land use land cover (LULC) is a key to creating more realistic results on LULC change trajectories and can lead to the implementation of appropriate management measures. This article assessed the past changes of LULC in the Mono River catchment using Landsat images from the years 1986, 2000, 2010, and 2020 by performing Machine Learning Classification Method Random Forest (RF) technique, and using Markov chain method and stakeholder’s perspective to simulate future LULC changes for the years 2030 and 2050. LULC was classified as savanna, cropland, forest, water bodies, and settlement. The results showed that croplands and forests areas declined from 2020 to 2050 with decreases of −7.8% and −1.9%, respectively, a modest increase in settlement (1.3%), and savanna was the dominant LULC in the study region with an increase of 8.5%. From stakeholders’ perspective, rapid population growth, deforestation, rainfall variability/flood, urbanization, and agricultural expansion were the most important drivers associated with the observed LULC changes in the area. Other factors, such as lack of political commitment, distance to river, and elevation were also mentioned. Additionally, most the land-use scenarios identified by stakeholders would intensify land degradation and reduce ecosystem services in the area. By considering all of these potential LULC changes, decision-makers need to develop and implement appropriate solutions (e.g., land use planning strategies, reforestation campaigns, forest protection measures) in order to limit the negative effects of future LULC changes.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3