Spatial, Geographical, Climatic, and Edaphic Influences on Moss Community Structure: A Case Study from Qinhuangdao, China

Author:

Zheng Guochen1ORCID,Gu Jiqi2,Zhao Wei3,Zhang Yuhan1,Guan Zidan1,Lei Ming1,He Chenyang1

Affiliation:

1. Hebei Engineering Research Center for Ecological Restoration of Seaward Rivers and Coastal Waters, Hebei University of Environmental Engineering, Qinhuangdao 066102, China

2. State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Life Sciences, Beijing Normal University, Beijing 100875, China

3. Institute of Water Resources and Electric Power, Heilongjiang University, Harbin 150080, China

Abstract

In the realms of ecology and biogeography, the interaction between biodiversity and environmental factors is a critical area of research. This intersection highlights how biological communities, especially among groups like bryophytes, are influenced and shaped by their surrounding environmental conditions. This study presents a pioneering investigation into the diversity and community structure of mosses in Qinhuangdao, Hubei Province, China, a region marked by its diverse topography and climate. Employing extensive field surveys across 30 plots, we gathered and analyzed the relationship between moss species distribution and environmental variables, including topographical, climatic, and soil factors. Utilizing a range of analytical techniques, such as cluster analysis, canonical correspondence analysis (CCA), and partial least squares path modeling (PLS-PM), we characterized the intricate relationships between moss biodiversity and environmental gradients. The research has documented 84 species distributed among 36 genera and 13 families. Solar radiation has a great impact on moss diversity. There were significant differences between Form. Entodon compressus and Form. Plagiobryum demissum. Climate has a great impact on the community structure of mosses. Geographical factors were also identified as key secondary influences, affecting moss community structures both directly and indirectly by creating suitable microenvironments and influencing climate and soil properties. Additionally, the study highlights the indirect impact of spatial factors on these environmental variables, which in turn shape the structure of biological communities. The findings indicate that the annual temperature range is a key factor influencing the distribution and formation of moss community structures. The findings provide new insights into the ecological adaptation of mosses in diverse environmental settings and lay a crucial foundation for biodiversity conservation and ecosystem management in the Qinhuangdao area.

Funder

Hebei Provincial Engineering Research Center for the Ecological Restoration of Rivers Entering the Sea and Adjacent Coastal Areas 2023 Annual Open Project

Publisher

MDPI AG

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3