Improved Speech Spatial Covariance Matrix Estimation for Online Multi-Microphone Speech Enhancement

Author:

Kim MinseungORCID,Cheong SeinORCID,Song HyungchanORCID,Shin Jong WonORCID

Abstract

Online multi-microphone speech enhancement aims to extract target speech from multiple noisy inputs by exploiting the spatial information as well as the spectro-temporal characteristics with low latency. Acoustic parameters such as the acoustic transfer function and speech and noise spatial covariance matrices (SCMs) should be estimated in a causal manner to enable the online estimation of the clean speech spectra. In this paper, we propose an improved estimator for the speech SCM, which can be parameterized with the speech power spectral density (PSD) and relative transfer function (RTF). Specifically, we adopt the temporal cepstrum smoothing (TCS) scheme to estimate the speech PSD, which is conventionally estimated with temporal smoothing. Furthermore, we propose a novel RTF estimator based on a time difference of arrival (TDoA) estimate obtained by the cross-correlation method. Furthermore, we propose refining the initial estimate of speech SCM by utilizing the estimates for the clean speech spectrum and clean speech power spectrum. The proposed approach showed superior performance in terms of the perceptual evaluation of speech quality (PESQ) scores, extended short-time objective intelligibility (eSTOI), and scale-invariant signal-to-distortion ratio (SISDR) in our experiments on the CHiME-4 database.

Funder

National Research Foundation of Korea

Institute for Information and Communications Technology Promotion

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference62 articles.

1. Vary, P., and Martin, R. (2006). Digital Speech Transmission: Enhancement, Coding and Error Concealment, John Wiley & Sons.

2. Kates, J.M. (2008). Digital Hearing Aids, Plural Publishing.

3. Rabiner, L., and Juang, B.H. (1993). Fundamentals of Speech Recognition, Prentice-Hall, Inc.

4. Improved Speech Enhancement Considering Speech PSD Uncertainty;Kim;IEEE/ACM Trans. Audio Speech Lang. Process.,2022

5. iDeepMMSE: An improved deep learning approach to MMSE speech and noise power spectrum estimation for speech enhancement;Kim;Proc. Interspeech,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3