The Role of the Vitamin D Receptor in the Epidermal Stem Cell Response to Wounding

Author:

Bikle Daniel D.1ORCID

Affiliation:

1. San Francisco VA Medical Center, University of California San Francisco, San Francisco, CA 94143, USA

Abstract

Chronic skin wounds are estimated to affect 6.5 million patients in the US, at a cost of over USD 25 billion. Efforts to prevent and/or treat such wounds will result in reduced morbidity and economic losses. This project is focused on the role of vitamin D signaling in the epidermis in the control of stem cell (SC) activation and function during the initial response to the wounding of the skin, a response that, if defective, contributes to poor wound healing or cancer. In this review, I first describe the anatomy of the skin, focusing first on the epidermis, describing the different cell layers which in a spatial way also represent the differentiation process of the interfollicular epidermis (IFE) as it undergoes continuous regeneration. I then describe the other components of the skin, particularly the hair follicle (HF), which undergoes a cyclic pattern of regeneration. Adult SCs residing in these regenerative tissues play essential roles in the maintenance of these tissues. However, when the skin is wounded, the progeny of SCs from all regions of the HF and IFE contribute to the healing process by changing their initial cell fate to take on an epithelial genotype/phenotype to heal the wound. Although earlier lineage tracing studies helped to define the contributions SCs from the different niches made to wound healing, scRNAseq studies have demonstrated a considerably more nuanced picture. The role of vitamin D signaling will be introduced by reviewing the unique role played by the epidermal keratinocyte first in producing vitamin D and then in metabolizing it into its active form 1,25(OH)2D. 1,25(OH)2D is the principal ligand for the vitamin D receptor (VDR), a transcription factor that helps to mediate the genomic changes in the stem cells in their response to wounding. In these actions, the VDR is regulated by coregulators, of which the steroid receptor coactivator complexes SRC 2 and 3 and the mediator complex (MED) play essential roles. The VDR generally acts in association with other transcription factors such as p63 and β-catenin that can colocalize with the VDR in the genes it regulates. Although much remains to be understood, the role of the VDR in the stem cell response to wounding is clearly essential and quite different from its classic roles in regulating calcium metabolism, although calcium is essential for the actions of vitamin D signaling in the skin.

Funder

Department of Veterans Affairs

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3