Feature Engineering for ICU Mortality Prediction Based on Hourly to Bi-Hourly Measurements

Author:

Y. A. Amer Ahmed,Vranken JulieORCID,Wouters Femke,Mesotten Dieter,Vandervoort Pieter,Storms Valerie,Luca Stijn,Vanrumste Bart,Aerts Jean-MarieORCID

Abstract

Mortality prediction for intensive care unit (ICU) patients is a challenging problem that requires extracting discriminative and informative features. This study presents a proof of concept for exploring features that can provide clinical insight. Through a feature engineering approach, it is attempted to improve ICU mortality prediction in field conditions with low frequently measured data (i.e., hourly to bi-hourly). Features are explored by investigating the vital signs measurements of ICU patients, labelled with mortality or survival at discharge. The vital signs of interest in this study are heart and respiration rate, oxygen saturation and blood pressure. The latter comprises systolic, diastolic and mean arterial pressure. In the feature exploration process, it is aimed to extract simple and interpretable features that can provide clinical insight. For this purpose, a classifier is required that maximises the margin between the two classes (i.e., survival and mortality) with minimum tolerance to misclassification errors. Moreover, it preferably has to provide a linear decision surface in the original feature space without mapping to an unlimited dimensionality feature space. Therefore, a linear hard margin support vector machine (SVM) classifier is suggested. The extracted features are grouped in three categories: statistical, dynamic and physiological. Each category plays an important role in enhancing classification error performance. After extracting several features within the three categories, a manual feature fine-tuning is applied to consider only the most efficient features. The final classification, considering mortality as the positive class, resulted in an accuracy of 91.56 % , sensitivity of 90.59 % , precision of 86.52 % and F 1 -score of 88.50 % . The obtained results show that the proposed feature engineering approach and the extracted features are valid to be considered and further enhanced for the mortality prediction purpose. Moreover, the proposed feature engineering approach moved the modelling methodology from black-box modelling to grey-box modelling in combination with the powerful classifier of SVMs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3