An Elastic Interface Model for the Delamination of Bending-Extension Coupled Laminates

Author:

Bennati StefanoORCID,Fisicaro PaoloORCID,Taglialegne LucaORCID,Valvo PaoloORCID

Abstract

The paper addresses the problem of an interfacial crack in a multi-directional laminated beam with possible bending-extension coupling. A crack-tip element is considered as an assemblage of two sublaminates connected by an elastic-brittle interface of negligible thickness. Each sublaminate is modeled as an extensible, flexible, and shear-deformable laminated beam. The mathematical problem is reduced to a set of two differential equations in the interfacial stresses. Explicit expressions are derived for the internal forces, strain measures, and generalized displacements in the sublaminates. Then, the energy release rate and its Mode I and Mode II contributions are evaluated. As an example, the model is applied to the analysis of the double cantilever beam test with both symmetric and asymmetric laminated specimens.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mode decoupling in interlaminar fracture toughness tests on bimaterial specimens;Engineering Fracture Mechanics;2023-09

2. A semi-analytical method for determining the mixed mode I/II fracture resistance and mode mixture of ADCB laminates;Composite Structures;2023-09

3. Closed-form solutions for two-layer Timoshenko beams with interlayer slip, uplift and rotation compliance;Meccanica;2023-04-08

4. INTERFACIAL FRACTURE TOUGHNESS OF UNCONVENTIONAL SPECIMENS: SOME KEY ISSUES;Journal of Technology and Exploitation in Mechanical Engineering;2023-02-09

5. Conclusion;Fracture Analysis of Layered Beams With an Elastically Coupled Behavior and Hygrothermal Stresses;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3