Abstract
The aim of this study is to develop a fast data fusion method for recognizing metro-to-bus transfer trips based on combined data from smart cards and a GPS system. The method is intended to establish station- and time-specific elapsed time thresholds for overcoming the limitations of one-size-fits-all criterion which is not sufficiently convincing for different transfer pairs and personal characteristics. Firstly, a data fusion method with bus smart card data and GPS data is proposed to supplement absent bus boarding information in the smart card data. Then, a model for identifying metro-to-bus interchange trips is derived based on two rules about maximal allowable transfer distance and elapsed transfer time threshold. Finally, in tests that used half-monthly field smart card data and GPS data from Shenzhen, China, the results recognized by the proposed method were more consistent with the actual surveyed group transfer time with a P value of 0.17 determined by Mann–Whitney U test. The comparison analysis showed that the proposed method can be widely applied to successfully identify and interpret metro-to-bus interchange behavior beyond a static transfer time threshold of 30 min.
Funder
Natural Science Foundation of Guangdong Province
Science and Technology Program of Guangzhou, China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献