Research on Performance Prediction Model of Impeller-Type Breather

Author:

Zhang XiaobinORCID,Zhu Weibing,Qian Lei,Li Miao

Abstract

To investigate the characteristics of separation and resistance of an impeller-type breather in an aeroengine lubrication system, orthogonal test design is used in calculation of the operating condition. Also, phase coupling of the RNG(Renormalization Group) k − ε model and the DPM model (Discrete Phase Model) is used in calculating the selected operating condition. Through analysis of the results, combined with dimensional analysis, it shows the significance of various influencing factors and the optimal level. Based on this, a general formed dimensionless group equation is established for comprehensive separation efficiency, breather separation efficiency, and ventilation resistance. Also, through the least squares method, the performance prediction model of the breather is obtained considering five operating conditions and six structural parameters. The theoretical calculation of separation efficiency and ventilation resistance of an impeller-type breather can be performed. The results show that: the main factors affecting the separation efficiency are the rotating speed and the number of impeller blades; the main factors affecting the ventilation resistance are the ventilation rate and the diameter of the vent hole; the variation trends of the calculated values of the performance prediction model and the experimental values are consistent. The mean error of the comprehensive separation efficiency is 0.97% and the mean error of the ventilation resistance is 11.73%. The calculated values and the experimental values remain consistent, which proves that this performance prediction model can provide references to the assessment and the design of an impeller breather.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference18 articles.

1. Aero Engine Design Manual;Lin,2002

2. Numerical Simulation of Gas-Liquid Two-Phase Flow in Oil-Gas Separator;Zhou;Chin. J. Comput. Mech.,2006

3. Evaluation Method for Centrifugal Breather Separation Capacity of Aero-Engine and Rotor Optimization Design;Lu;Mech. Des. Manuf.,2008

4. Experimental Analysis of Air∕Oil Separator Performance

5. Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Analysis of a Compact Offset Strip Fin Heat Exchanger for Lubrication System in Aero Engine;Journal of Thermal Science and Engineering Applications;2024-05-10

2. Numerical simulation of jet atomization process of swirl nozzle;Journal of Physics: Conference Series;2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3