Incorporating Word Significance into Aspect-Level Sentiment Analysis

Author:

Mokhosi Refuoe,Qin ZhiGuang,Liu Qiao,Shikali Casper

Abstract

Aspect-level sentiment analysis has drawn growing attention in recent years, with higher performance achieved through the attention mechanism. Despite this, previous research does not consider some human psychological evidence relating to language interpretation. This results in attention being paid to less significant words especially when the aspect word is far from the relevant context word or when an important context word is found at the end of a long sentence. We design a novel model using word significance to direct attention towards the most significant words, with novelty decay and incremental interpretation factors working together as an alternative for position based models. The interpretation factor represents the maximization of the degree each new encountered word contributes to the sentiment polarity and a counter balancing stretched exponential novelty decay factor represents decaying human reaction as a sentence gets longer. Our findings support the hypothesis that the attention mechanism needs to be applied to the most significant words for sentiment interpretation and that novelty decay is applicable in aspect-level sentiment analysis with a decay factor β = 0.7 .

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference57 articles.

1. Deep Learning in Natural Language Processing;Deng,2018

2. Interactive Attention Networks for Aspect-Level Sentiment Classification;Ma;arXiv,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3