Coupling Effect of Space-Arrangement and Wall Thermal Resistance on Indoor Thermal Environment of Passive Solar Single-Family Building in Tibet

Author:

Cui Xiaoling,Zhang Yangkai,Sang Guochen,Wang Wenkang,Zhu Yiyun,Zhang Lei

Abstract

In areas where solar energy is abundant, such as the Tibetan plateau, passive solar buildings are attracting more and more attention and becoming a popular form of rural building. However, it is often difficult to achieve the satisfactory indoor thermal environment in a local rural passive solar single-family house. In order to improve the indoor thermal environment of passive solar buildings through building design, a systematic study of rural single-family buildings in Tibet was conducted. The basic parameters were investigated on the outdoor thermal environment, space-arrangement, envelope structure, and the indoor thermal environment. The building model considering space-arrangement modes was developed based on the survey data in multi-space passive solar buildings. The general physical and mathematical analysis models of multi-space passive solar buildings were established based on the heat transfer theory. Furthermore, the effects of space-arrangement and exterior wall thermal resistance on indoor air temperature were analyzed by numerical simulation. Results show that the indoor air temperature of the passive solar building is influenced by space-arrangement and wall thermal resistance together. When the space-arrangement of the building model was changed from “north-south through type” (mode a) to “through and separation combination” (mode b) and “north-south separation” (mode c), the indoor air temperature of the living room increased from 8.8 °C to 10.6 °C and 11.6 °C, with increases of 20.5% and 31.8%, respectively. In addition, equally increasing the thermal resistance of exterior walls in different orientations has different effects on the indoor air temperature. In the space-arrangement mode c, comparing with the temperature increment of the living room and bedroom caused by increasing thermal resistance of the south wall and north wall, the temperature increment of the living room caused by increasing thermal resistance of the east/west wall increased by 151.7% and 32.7%, and that of the bedroom increased by 609.1% and 239.1% respectively. This study can provide a reference for the optimal design of passive solar buildings in solar energy abundant areas.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3