Coordination of Multiple Autonomous Agents Using Naturally Generated Languages in Task Planning

Author:

Wang LiORCID,Guo Qiao

Abstract

Language plays a prominent role in the activities of human beings and other intelligent creatures. One of the most important functions of languages is communication. Inspired by this, we attempt to develop a novel language for cooperation between artificial agents. The language generation problem has been studied earlier in the context of evolutionary games in computational linguistics. In this paper, we take a different approach by formulating it in the computational model of rationality in a multi-agent planning setting. This paper includes three main parts: First, we present a language generation problem that is connected to state abstraction and introduce a few of the languages’ properties. Second, we give the sufficient and necessary conditions of a valid abstraction with proofs and develop an efficient algorithm to construct the languages where several words are generated naturally. The sentences composed of words can be used by agents to regulate their behaviors during task planning. Finally, we conduct several experiments to evaluate the benefits of the languages in a variety of scenarios of a path-planning domain. The empirical results demonstrate that our languages lead to reduction in communication cost and behavior restriction.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. An Introduction to Multiagent Systems;Wooldridge,2009

2. Advanced approaches for multi-robot coordination in logistic scenarios

3. Designing Collective Behavior in a Termite-Inspired Robot Construction Team

4. Autonomous transportation and deployment with aerial robots for search and rescue missions

5. Coordinating hundreds of cooperative, autonomous vehicles in warehouses;Wurman;AI Mag.,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3