A Stratigraphic Prediction Method Based on Machine Learning

Author:

Zhou Cuiying,Ouyang Jinwu,Ming Weihua,Zhang Guohao,Du Zichun,Liu ZhenORCID

Abstract

Simulation of a geostratigraphic unit is of vital importance for the study of geoinformatics, as well as geoengineering planning and design. A traditional method depends on the guidance of expert experience, which is subjective and limited, thereby making the effective evaluation of a stratum simulation quite impossible. To solve this problem, this study proposes a machine learning method for a geostratigraphic series simulation. On the basis of a recurrent neural network, a sequence model of the stratum type and a sequence model of the stratum thickness is successively established. The performance of the model is improved in combination with expert-driven learning. Finally, a machine learning model is established for a geostratigraphic series simulation, and a three-dimensional (3D) geological modeling evaluation method is proposed which considers the stratum type and thickness. The results show that we can use machine learning in the simulation of a series. The series model based on machine learning can describe the real situation at wells, and it is a complimentary tool to the traditional 3D geological model. The prediction ability of the model is improved to a certain extent by including expert-driven learning. This study provides a novel approach for the simulation and prediction of a series by 3D geological modeling.

Funder

Provincial Science and Technology Project of Guangdong Province

Guangzhou Science and Technology Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3