ITFDS: Channel-Aware Integrated Time and Frequency-Based Downlink LTE Scheduling in MANET

Author:

Tuan Le MinhORCID,Son Le Hoang,Long Hoang VietORCID,Priya L. Rajaretnam,Soundar K. Ruba,Robinson Y. HaroldORCID,Kumar Raghvendra

Abstract

One of the crucial problems in Industry 4.0 is how to strengthen the performance of mobile communication within mobile ad-hoc networks (MANETs) and mobile computational grids (MCGs). In communication, Industry 4.0 needs dynamic network connectivity with higher amounts of speed and bandwidth. In order to support multiple users for video calling or conferencing with high-speed transmission rates and low packet loss, 4G technology was introduced by the 3G Partnership Program (3GPP). 4G LTE is a type of 4G technology in which LTE stands for Long Term Evolution, followed to achieve 4G speeds. 4G LTE supports multiple users for downlink with higher-order modulation up to 64 quadrature amplitude modulation (QAM). With wide coverage, high reliability and large capacity, LTE networks are widely used in Industry 4.0. However, there are many kinds of equipment with different quality of service (QoS) requirements. In the existing LTE scheduling methods, the scheduler in frequency domain packet scheduling exploits the spatial, frequency, and multi-user diversity to achieve larger MIMO for the required QoS level. On the contrary, time-frequency LTE scheduling pays attention to temporal and utility fairness. It is desirable to have a new solution that combines both the time and frequency domains for real-time applications with fairness among users. In this paper, we propose a channel-aware Integrated Time and Frequency-based Downlink LTE Scheduling (ITFDS) algorithm, which is suitable for both real-time and non-real-time applications. Firstly, it calculates the channel capacity and quality using the channel quality indicator (CQI). Additionally, data broadcasting is maintained by using the dynamic class-based establishment (DCE). In the time domain, we calculate the queue length before transmitting the next packets. In the frequency domain, we use the largest weight delay first (LWDF) scheduling algorithm to allocate resources to all users. All the allocations would be taken placed in the same transmission time interval (TTI). The new method is compared against the largest weighted delay first (LWDF), proportional fair (PF), maximum throughput (MT), and exponential/proportional fair (EXP/PF) methods. Experimental results show that the performance improves by around 12% compared with those other algorithms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3