Gait Event Detection for Stroke Patients during Robot-Assisted Gait Training

Author:

Schicketmueller AndreasORCID,Lamprecht JulianeORCID,Hofmann Marc,Sailer Michael,Rose GeorgORCID

Abstract

Functional electrical stimulation and robot-assisted gait training are techniques which are used in a clinical routine to enhance the rehabilitation process of stroke patients. By combining these technologies, therapy effects could be further improved and the rehabilitation process can be supported. In order to combine these technologies, a novel algorithm was developed, which aims to extract gait events based on movement data recorded with inertial measurement units. In perspective, the extracted gait events can be used to trigger functional electrical stimulation during robot-assisted gait training. This approach offers the possibility of equipping a broad range of potential robot-assisted gait trainers with functional electrical stimulation. In particular, the aim of this study was to test the robustness of the previously developed algorithm in a clinical setting with patients who suffered a stroke. A total amount of N = 10 stroke patients participated in the study, with written consent. The patients were assigned to two different robot-assisted gait trainers (Lyra and Lokomat) according to their performance level, resulting in five recording sessions for each gait-trainer. A previously developed algorithm was applied and further optimized in order to extract the gait events. A mean detection rate across all patients of 95.8% ± 7.5% for the Lyra and 98.7% ± 2.6% for the Lokomat was achieved. The mean type 1 error across all patients was 1.0% ± 2.0% for the Lyra and 0.9% ± 2.3% for the Lokomat. As a result, the developed algorithm was robust against patient specific movements, and provided promising results for the further development of a technique that can detect gait events during robot-assisted gait training, with the future aim to trigger functional electrical stimulation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3