SignalFormer: Hybrid Transformer for Automatic Drone Identification Based on Drone RF Signals

Author:

Yan Xiang1ORCID,Han Bing1ORCID,Su Zhigang1,Hao Jingtang1

Affiliation:

1. Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China

Abstract

With the growing integration of drones into various civilian applications, the demand for effective automatic drone identification (ADI) technology has become essential to monitor malicious drone flights and mitigate potential threats. While numerous convolutional neural network (CNN)-based methods have been proposed for ADI tasks, the inherent local connectivity of the convolution operator in CNN models severely constrains RF signal identification performance. In this paper, we propose an innovative hybrid transformer model featuring a CNN-based tokenization method that is capable of generating T-F tokens enriched with significant local context information, and complemented by an efficient gated self-attention mechanism to capture global time/frequency correlations among these T-F tokens. Furthermore, we underscore the substantial impact of incorporating phase information into the input of the SignalFormer model. We evaluated the proposed method on two public datasets under Gaussian white noise and co-frequency signal interference conditions, The SignalFormer model achieved impressive identification accuracy of 97.57% and 98.03% for coarse-grained identification tasks, and 97.48% and 98.16% for fine-grained identification tasks. Furthermore, we introduced a class-incremental learning evaluation to demonstrate SignalFormer’s competence in handling previously unseen categories of drone signals. The above results collectively demonstrate that the proposed method is a promising solution for supporting the ADI task in reliable ways.

Funder

Tianjin Municipal Education Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3