Efficient Clustering for Continuous Occupancy Mapping Using a Mixture of Gaussian Processes

Author:

Kim SoohwanORCID,Kim JonghyukORCID

Abstract

This paper proposes a novel method for occupancy map building using a mixture of Gaussian processes. Gaussian processes have proven to be highly flexible and accurate for a robotic occupancy mapping problem, yet the high computational complexity has been a critical barrier for large-scale applications. We consider clustering the data into small, manageable subsets and applying a mixture of Gaussian processes. One of the problems in clustering is that the number of groups is not known a priori, thus requiring inputs from experts. We propose two efficient clustering methods utilizing (1) a Dirichlet process and (2) geometrical information in the context of occupancy mapping. We will show that the Dirichlet process-based clustering can significantly speed up the training step of the Gaussian process and if geometrical features, such as line features, are available, they can further improve the clustering accuracy. We will provide simulation results, analyze the performance and demonstrate the benefits of the proposed methods.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

1. High resolution maps from wide angle sonar;Moravec;Proceedings of the IEEE International Conference on Robotics and Automation,1985

2. OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems;Wurm;Proceedings of the ICRA Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation,2010

3. Contextual occupancy maps using Gaussian processes;O’Callaghan;Proceedings of the IEEE International Conference on Robotics and Automation,2009

4. Gaussian process occupancy maps

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3