On the Design of Efficient Hierarchic Architecture for Software Defined Vehicular Networks

Author:

Adnan Muhammad,Iqbal JawaidORCID,Waheed AbdulORCID,Amin Noor UlORCID,Zareei MahdiORCID,Goudarzi ShidrokhORCID,Umer AsifORCID

Abstract

Modern vehicles are equipped with various sensors, onboard units, and devices such as Application Unit (AU) that support routing and communication. In VANETs, traffic management and Quality of Service (QoS) are the main research dimensions to be considered while designing VANETs architectures. To cope with the issues of QoS faced by the VANETs, we design an efficient SDN-based architecture where we focus on the QoS of VANETs. In this paper, QoS is achieved by a priority-based scheduling algorithm in which we prioritize traffic flow messages in the safety queue and non-safety queue. In the safety queue, the messages are prioritized based on deadline and size using the New Deadline and Size of data method (NDS) with constrained location and deadline. In contrast, the non-safety queue is prioritized based on First Come First Serve (FCFS) method. For the simulation of our proposed scheduling algorithm, we use a well-known cloud computing framework CloudSim toolkit. The simulation results of safety messages show better performance than non-safety messages in terms of execution time.

Funder

The Ministry of Higher Education Malaysia and Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Study on QoS Enhancement in SDN based VANET;2024 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT);2024-07-04

2. Can software-defined vehicles never roll over: A perspective of active structural transformation;Fundamental Research;2024-07

3. Attention based: modeling human perception of reflectional symmetry in the wild;Journal of Ambient Intelligence and Humanized Computing;2024-06-07

4. Prioritization and scheduling in the vehicle-to-infrastructure (V2I) scheme for vanets using enhanced congestion control source based ant colony optimization;Automatika;2024-02-26

5. Lightweight Blockchain-based Secuirity Protocol for Internet of Vehicle Things;2023 Global Conference on Information Technologies and Communications (GCITC);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3