Hand Gesture Recognition Using Single Patchable Six-Axis Inertial Measurement Unit via Recurrent Neural Networks

Author:

Valarezo Añazco EdwinORCID,Han Seung Ju,Kim Kangil,Lopez Patricio Rivera,Kim Tae-Seong,Lee SangminORCID

Abstract

Recording human gestures from a wearable sensor produces valuable information to implement control gestures or in healthcare services. The wearable sensor is required to be small and easily worn. Advances in miniaturized sensor and materials research produces patchable inertial measurement units (IMUs). In this paper, a hand gesture recognition system using a single patchable six-axis IMU attached at the wrist via recurrent neural networks (RNN) is presented. The IMU comprises IC-based electronic components on a stretchable, adhesive substrate with serpentine-structured interconnections. The proposed patchable IMU with soft form-factors can be worn in close contact with the human body, comfortably adapting to skin deformations. Thus, signal distortion (i.e., motion artifacts) produced for vibration during the motion is minimized. Also, our patchable IMU has a wireless communication (i.e., Bluetooth) module to continuously send the sensed signals to any processing device. Our hand gesture recognition system was evaluated, attaching the proposed patchable six-axis IMU on the right wrist of five people to recognize three hand gestures using two models based on recurrent neural nets. The RNN-based models are trained and validated using a public database. The preliminary results show that our proposed patchable IMU have potential to continuously monitor people’s motions in remote settings for applications in mobile health, human–computer interaction, and control gestures recognition.

Funder

Ministry of Health and Welfare (MOHW, Korea) and Korea Health Industry Development Institute

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Implementation of a Textile-Based Sensor for Wearable Rehabilitation Technologies;2023 11th RSI International Conference on Robotics and Mechatronics (ICRoM);2023-12-19

2. Influence of grasping postures on skin deformation of hand;Scientific Reports;2023-12-05

3. AccessWear: Making Smartphone Applications Accessible to Blind Users;Proceedings of the 29th Annual International Conference on Mobile Computing and Networking;2023-10-02

4. Test–Retest Repeatability of Human Gestures in Manipulation Tasks;Applied Sciences;2023-07-02

5. Flexible Strain Sensor-Based Data Glove for Gesture Interaction in the Metaverse: A Review;International Journal of Human–Computer Interaction;2023-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3