Virtual Needle Insertion with Enhanced Haptic Feedback for Guidance and Needle–Tissue Interaction Forces

Author:

Selim Mostafa1ORCID,Dresscher Douwe1ORCID,Abayazid Momen1ORCID

Affiliation:

1. Robotics and Mechatronics Research Group, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, 7500 AE Enschede, The Netherlands

Abstract

Interventional radiologists mainly rely on visual feedback via imaging modalities to steer a needle toward a tumor during biopsy and ablation procedures. In the case of CT-guided procedures, there is a risk of exposure to hazardous X-ray-based ionizing radiation. Therefore, CT scans are usually not used continuously, which increases the chances of a misplacement of the needle and the need for reinsertion, leading to more tissue trauma. Interventionalists also encounter haptic feedback via needle–tissue interaction forces while steering a needle. These forces are useful but insufficient to clearly perceive and identify deep-tissue structures such as tumors. The objective of this paper was to investigate the effect of enhanced force feedback for sensing interaction forces and guiding the needle when applied individually and simultaneously during a virtual CT-guided needle insertion task. We also compared the enhanced haptic feedback to enhanced visual feedback. We hypothesized that enhancing the haptic feedback limits the time needed to reach the target accurately and reduces the number of CT scans, as the interventionalist depends more on real-time enhanced haptic feedback. To test the hypothesis, a simulation environment was developed to virtually steer a needle in five degrees of freedom (DoF) to reach a tumor target embedded in a liver model. Twelve participants performed in the experiment with different feedback conditions where we measured their performance in terms of the following: targeting accuracy, trajectory tracking, number of CT scans required, and the time needed to finish the task. The results suggest that the combination of enhanced haptic feedback for guidance and sensing needle–tissue interaction forces significantly reduce the number of scans and the duration required to finish the task by 32.1% and 46.9%, respectively, when compared to nonenhanced haptic feedback. The other feedback modalities significantly reduced the duration to finish the task by around 30% compared to nonenhanced haptic feedback.

Funder

ITEA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3