Underwater Acoustic Target Recognition Based on Depthwise Separable Convolution Neural Networks

Author:

Hu GangORCID,Wang Kejun,Liu Liangliang

Abstract

Facing the complex marine environment, it is extremely challenging to conduct underwater acoustic target feature extraction and recognition using ship-radiated noise. In this paper, firstly, taking the one-dimensional time-domain raw signal of the ship as the input of the model, a new deep neural network model for underwater target recognition is proposed. Depthwise separable convolution and time-dilated convolution are used for passive underwater acoustic target recognition for the first time. The proposed model realizes automatic feature extraction from the raw data of ship radiated noise and temporal attention in the process of underwater target recognition. Secondly, the measured data are used to evaluate the model, and cluster analysis and visualization analysis are performed based on the features extracted from the model. The results show that the features extracted from the model have good characteristics of intra-class aggregation and inter-class separation. Furthermore, the cross-folding model is used to verify that there is no overfitting in the model, which improves the generalization ability of the model. Finally, the model is compared with traditional underwater acoustic target recognition, and its accuracy is significantly improved by 6.8%.

Funder

National Natural Science Foundation of China

National Defense Basic Scientific Research Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference54 articles.

1. Combining Denoising Autoencoders and Dynamic Programming for Acoustic Detection and Tracking of Underwater Moving Targets

2. Classification of ships using underwater radiated noise;Lourens;Conf. Commun. Signal Process.,1988

3. Target classification in a passive sonar—An expert system approach;Rajagopal;IEEE ICASSP-90,2002

4. Machine analysis of acoustical signals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3