Abstract
Small-scale fisheries (SSFs) in the Mediterranean and Black seas play a significant social and economic role, representing 84% of the fishing fleet (70,000 vessels), 26% of total revenue (USD 633 million) and 60% of total employment (150,000 people), with the Food and Agriculture Organization (FAO) recently taking important initiatives to sustain livelihoods. Effective management of important natural fisheries resources that sustain livelihoods requires a holistic approach accounting for all parts of the catch. Quantitative data on seasonal catch dynamics together with classification of bycatch species to IUCN vulnerability status and associated revenues from retained incidental catch were used to reveal the effect of a small-scale shrimp trap fishery on bycatch. We use three main quantitative variables (i.e., density, biomass and number of bycatch species) and show a positive correlation between bycatch and the seasonal catch dynamics of the target species during late spring and summer. On the contrary, discards were proportionally lower during winter, with the majority of discarded fish species not considered endangered. Six retained species in spring–summer and five discarded species in winter were found to modulate the structure of species’ assemblage. Out of 55 bycatch species, 26 were retained and 29 discarded. Only four species were considered threatened, all of which were caught in very low numbers (<2 individuals), while the majority of the retained species was not considered endangered. The rapid sorting time (<1 min/per trap) pointed towards a decreased effect on certain discarded crustacean species and a significant reduction in total bycatch with timely haul time (from 71 to 47%). The results of this study can be used when considering future mitigation measures for this fishery, while the methodology used can provide insights into the management of similar trap fisheries worldwide when taking into account the sustainability of SSFs and the regional vulnerability status of bycatch species.
Subject
Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献