Evaluation of the Relevance of Global and By-Step Homogenization for Composites and Heterogeneous Materials at Several Scales

Author:

Kenisse Noussaiba1,Masmoudi Mohamed1,Kanit Toufik12,Ounissi Oussama3ORCID,Djebara Youcef1,Kaddouri Wahid1ORCID

Affiliation:

1. Laboratoire de Mécanique des Structures et Matériaux, Batna 2 University, Batna 05078, Algeria

2. Unité de Mécanique de Lille UML J. Boussinesq, Université de Lille, Villeneuve d’Ascq, 59000 Lille, France

3. Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 9201162, Japan

Abstract

Two hypotheses divide experts on determining the effective properties of composite materials using multi–scale homogenization methods. The first hypothesis states that multi-scale homogenization methods can ensure the direct determination of effective properties, at the macro level, of composite materials from a single representation of the medium at the lowest possible scale that allows for a good representation of all heterogeneities. The second hypothesis states that the determination cannot be ensured directly from a single scale but rather through multistep homogenization where each step represents the medium at a different scale from the lowest to the macroscale. To answer this question, a rigorous study is carried out; it includes calculating the two effective elastic properties, bulk, and shear moduli of three phases of a multi–layered sphere composite model by studying three phases. A multistep homogenization method is used to determine the effective properties of the composite and the obtained results are compared with those of the direct homogenization. Two different studies are considered: the first is based on an analytical model and the second on the numerical homogenization based on finite element calculation. To consider the effect of some influential parameters, several situations are treated by the combination of the variation of the volume fractions of the three phases and their property contrasts. The analytical calculations are performed using the Python 3.10 commercial software. It could be concluded that the effective elastic properties obtained either by the multistep or by the direct homogenization show no significant difference.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3