Analysis of Damage and Permeability Evolution of Sandstone under Compression Deformation

Author:

Rong Yao1,Sun Yang1,Chen Xiangsheng2ORCID,Ding Haibin2,Xu Changjie2

Affiliation:

1. Jiangxi Transportation Institute Co., Ltd., Nanchang 330200, China

2. State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China

Abstract

A large number of experimental studies have demonstrated that the permeability and damage of rock are not constant but rather functionally dependent on stresses or stress-induced deformation. Neglecting the influence of damage and permeability evolution on rock mechanics and sealing properties can result in an overestimation of the safety and stability of underground engineering, leading to an incomplete assessment of the risks associated with surrounding rock failure. To address this, the damage and permeability evolution functions of rock under compression were derived through a combination of experimental results and theoretical analysis, unifying the relationship between porosity and permeability in both porous media flow and fractured flow. Based on this, a fluid–solid coupled seepage model considering rock damage and permeability evolution was proposed. More importantly, this model was utilized to investigate the behavior of deformation, damage, and permeability, as well as their coupled effects. The model’s validity was verified by comparing its numerical results with experimental data. The analysis results show that the evolution of permeability and porosity resulted from a competitive interaction between effective mean stress and stress-induced damage. When the effective mean stress was dominant, the permeability tended to decrease; otherwise, it followed an increasing trend. The damage evolution was primarily related to stress- and pressure-induced crack growth and irreversible deformation. Additionally, the influence of the seepage pressure on the strength, damage, and permeability of the investigated rock was evaluated. The model results reveal the damage and permeability evolution of the rock under compression, which has a certain guiding significance for the stability and safety analysis of rock in underground engineering.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Jiangxi Provincial Natural Science Foundation

Foundation of the Department of Transportation of Jiangxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3