A Blockchain-Based Supervision Data Security Sharing Framework

Author:

Yong Jiu12ORCID,Lei Xiaomei2ORCID,Huang Zixin1,Dang Jianwu1,Wang Yangping1

Affiliation:

1. The School of Electronic and Information Engineering, Lanzhou Jiaotong Univeristy, Lanzhou 730070, China

2. College of Intelligence and Computing, Tianjin University, Tianjin 300072, China

Abstract

Ensuring trust, security, and privacy among all participating parties in the process of sharing supervision data is crucial for engineering quality and safety. However, the current centralized architecture platforms that are commonly used for engineering supervision data have problems such as low data sharing and high centralization. A blockchain-based framework for the secure sharing of engineering supervision data is proposed by utilizing the tamper-proof, decentralized, and traceable characteristics of blockchain. The secure storage of supervision data is achieved by combining it with the IPFS (InterPlanetary File System), reducing the storage pressure of on-chain data. Additionally, a fast data retrieval framework is designed based on the storage characteristics of supervision data. Then, CP-ABE (Ciphertext Policy Attribute Based Encryption) is combined with a data storage framework to ensure the privacy, security, and reliability of supervisory data during the sharing process. Finally, smart contracts are designed under the designed framework to ensure the automatic and trustworthy execution of access control processes. The analysis and evaluation results of the security, encryption and decryption, and cost performance of the proposed blockchain framework show that the encryption and decryption time is completed within 0.1 s, the Gas cost is within the normal consumption range, and the time cost of smart contract invocation does not exceed 5 s, demonstrating good availability and reusability of the method proposed in this article.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Youth Science and Technology Talent Innovation Project of Lanzhou

Joint Innovation Fund Project of Lanzhou Jiaotong University and Corresponding Supporting University

Publisher

MDPI AG

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3