The Influence of Variable Plasma Welding Parameters on Weld Geometry, Dilution Factor, and Microhardness

Author:

Bazychowska Sylwia1ORCID,Panasiuk Katarzyna1ORCID,Starosta Robert1

Affiliation:

1. Faculty of Marine Engineering, Gdynia Maritime University, 81-225 Gdynia, Poland

Abstract

Weld surfacing is the process of applying a layer of metal to the surface of metal objects by simultaneously melting the substrate. As a result of this process, the metal content of the padding weld can be as high as several tens of percents. It is a method used to regenerate machine parts and improve the properties of the surface layer, increasing its resistance to abrasion, corrosion, erosion, and cavitation. It also supports the repair and creation of permanent protective coatings in the engineering, automotive, energy, and aerospace industries. This makes it possible to repair damaged parts instead of completely replacing them, saving time and production costs. Plasma surfacing technology is used for components that require high hardness and corrosion resistance under various environmental conditions. Plasma wire surfacing is not sufficiently presented and described in the current literature, which creates problems in determining the appropriate process parameters. The influence of variable plasma surfacing parameters on steel C45 significantly affects surfacing weld geometry, the dilution factor, and microhardness. Higher currents can increase the dilution factor, integrating more base metal into the weld pool, which may alter the chemical composition and mechanical properties of the weld. Variations in surfacing speed and heat input also affect the microhardness of the surfaced joint, with higher heat inputs potentially leading to softer welds due to slower cooling rates. Optimizing these parameters is essential to achieving desired surfacing weld characteristics and ensuring the structural integrity of C45 steel joints. This paper presents the influence of varying plasma surfacing parameters on the surfacing geometry, the dilution factor, and microhardness. The tests were carried out on a Panasonic TM-1400 GIII automated surfacing machine with CastoMag 45554S solid wire as the filler material. Flat bars of C45 steel were prepared, and then the variable parameters of the surfacing process were developed. Tests were carried out to determine the dilution factor, followed by microhardness measurements. The results showed a significant dependence of the effect of the parameters on the surfacing geometry and the dilution factor.

Publisher

MDPI AG

Reference28 articles.

1. Bober, M., and Tobota, K. (2015). Badania Istotności Wpływu Podstawowych Parametrów Napawania Plazmowego na Geometrię Napoin, Przegląd Spawalnictwa.

2. Industrial surfacing and hardfacing technology, fundamentals and applications;Klimpel;Weld. Technol. Rev.,2019

3. Influence of welding current on microstructure and properties of nickel-based alloy hardfacing by plasma transferred arc welding;Cui;Mater. Transanctions,2017

4. Przyrostowe technologie 3D w odbudowie kształtu zużytych eksploatacyjnie łopat turbin parowych;Chrzanowski;Autobusy,2017

5. Understanding and overcoming of abnormity at start and end of the weld bead in additive manufacturing with GMAW;Hu;Int. J. Adv. Manuf. Technol.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3