Direct Solar Thermal Water-Splitting Using Iron and Iron Oxides at High Temperatures: A Review

Author:

Fuentes Manuel12ORCID,Pulido Diego1ORCID,Fuentealba Edward1ORCID,Soliz Alvaro3ORCID,Toro Norman4ORCID,Sagade Atul2ORCID,Galleguillos Madrid Felipe M.1ORCID

Affiliation:

1. Centro de Desarrollo Energético Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile

2. Departamento de Ingeniería Mecánica, Universidad de Tarapacá, Arica 1100000, Chile

3. Departamento de Ingeniería en Metalurgia, Universidad de Atacama, Copiapó 1531772, Chile

4. Facultad de Ingeniería y Arquitectura, Universidad Arturo Prat, Iquique 1100000, Chile

Abstract

Green hydrogen is poised to play a crucial role in the energy-transition process in developed countries over the coming years, particularly in those countries aiming to achieve net-zero emissions. Consequently, the for green hydrogen is expected to rise significantly. This article explores the fundamental methods of producing hydrogen, focusing on the oxidation reaction within a thermochemical solar cycle for the dissociation of steam. Solar thermochemical cycles have been extensively researched, yet they remain in the development stage as research groups strive to identify optimal materials and conditions to enhance process efficiency, especially at high temperatures. The article analyses theoretical foundations drawn from exhaustive scientific studies related to the oxidation of iron in steam, the relationship with the activation energy of the corrosive process, thermodynamic aspects, and the kinetic model of a heterogeneous reaction. Additionally, it presents various mechanisms of high-temperature oxidation, pH effects, reactors, and materials (including fluidized beds). This scientific review suggests that hydrogen production via a thermochemical cycle is more efficient than production via electrochemical processes (such as electrolysis), provided the limitations of the cycle’s reduction stage can be overcome.

Publisher

MDPI AG

Reference103 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3