Refined Land Use Classification for Urban Core Area from Remote Sensing Imagery by the EfficientNetV2 Model

Author:

Wang Zhenbao1ORCID,Liang Yuqi1,He Yanfang1,Cui Yidan2,Zhang Xiaoxian3

Affiliation:

1. School of Architecture and Art, Hebei University of Engineering, Handan 056038, China

2. School of Architecture and Urban Planning, Nanjing University, Nanjing 210093, China

3. Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore

Abstract

In the context of accelerated urbanization, assessing the quality of the existing built environment plays a crucial role in urban renewal. In the existing research and use of deep learning models, most categories are urban construction areas, forest land, farmland, and other categories. These categories are not conducive to a more accurate analysis of the spatial distribution characteristics of urban green space, parking space, blue space, and square. A small sample of refined land use classification data for urban built-up areas was produced using remote sensing images. The large-scale remote sensing images were classified using deep learning models, with the objective of inferring the fine land category of each tile image. In this study, satellite remote sensing images of four cities, Handan, Shijiazhuang, Xingtai, and Tangshan, were acquired by Google Class 19 RGB three-channel satellite remote sensing images to establish a data set containing fourteen urban land use classifications. The convolutional neural network model EfficientNetV2 is used to train and validate the network framework that performs well on computer vision tasks and enables intelligent image classification of urban remote sensing images. The model classification effect is compared and analyzed through accuracy, precision, recall, and F1-score. The results show that the EfficientNetV2 model has a classification recognition accuracy of 84.56% on the constructed data set. The testing set accuracy increases sequentially after transfer learning. This paper verifies that the proposed research framework has good practicality and that the results of the land use classification are conducive to the fine-grained quantitative analysis of built-up environmental quality.

Funder

the Hebei Social Science Development Research Project in 2023

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3