Open Sesame! Universal Black-Box Jailbreaking of Large Language Models

Author:

Lapid Raz12ORCID,Langberg Ron2,Sipper Moshe1ORCID

Affiliation:

1. Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel

2. DeepKeep, Tel-Aviv 6701203, Israel

Abstract

Large language models (LLMs), designed to provide helpful and safe responses, often rely on alignment techniques to align with user intent and social guidelines. Unfortunately, this alignment can be exploited by malicious actors seeking to manipulate an LLM’s outputs for unintended purposes. In this paper, we introduce a novel approach that employs a genetic algorithm (GA) to manipulate LLMs when model architecture and parameters are inaccessible. The GA attack works by optimizing a universal adversarial prompt that—when combined with a user’s query—disrupts the attacked model’s alignment, resulting in unintended and potentially harmful outputs. Our novel approach systematically reveals a model’s limitations and vulnerabilities by uncovering instances where its responses deviate from expected behavior. Through extensive experiments, we demonstrate the efficacy of our technique, thus contributing to the ongoing discussion on responsible AI development by providing a diagnostic tool for evaluating and enhancing alignment of LLMs with human intent. To our knowledge, this is the first automated universal black-box jailbreak attack.

Funder

Israeli Innovation Authority through the Trust.AI consortium

Publisher

MDPI AG

Reference59 articles.

1. Wang, Y., Zhong, W., Li, L., Mi, F., Zeng, X., Huang, W., Shang, L., Jiang, X., and Liu, Q. (2023). Aligning Large Language Models with Human: A Survey. arXiv.

2. Training language models to follow instructions with human feedback;Ouyang;Adv. Neural Inf. Process. Syst.,2022

3. Glaese, A., McAleese, N., Trębacz, M., Aslanides, J., Firoiu, V., Ewalds, T., Rauh, M., Weidinger, L., Chadwick, M., and Thacker, P. (2022). Improving alignment of dialogue agents via targeted human judgements. arXiv.

4. Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J., Jones, A., Chen, A., Goldie, A., Mirhoseini, A., and McKinnon, C. (2022). Constitutional AI: Harmlessness from AI feedback. arXiv.

5. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (May, January 30). Towards Deep Learning Models Resistant to Adversarial Attacks. Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3