An Extensive Parametric Analysis and Optimization to Design Unidimensional Periodic Acoustic Metamaterials for Noise Attenuation

Author:

Shendy Mohamed1ORCID,Oluyemi Momoiyioluwa1,Maftoon Nima2ORCID,Salehian Armaghan1

Affiliation:

1. Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

2. Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract

The presented research delineates an extensive study aimed at obtaining and comparing optimal designs and geometries for one-dimensional periodic acoustic metamaterials to attenuate noise within the audible frequency range of 20 Hz to 20 kHz. Various periodic designs, encompassing diverse geometric parameters and shapes—from Basic-Periodic to Semi-Periodic, Tapered-Diverging, and Tapered-Converging unit cells of repeated patterns—are examined to identify the most effective configurations for this application. A thorough parametric analysis is executed employing FE-Bloch’s theorem across these four configurations to determine their bandgaps and to identify the most effective geometry. A normalization process is utilized to extend the domain of the analysis and the range of the system parameters studied in this work, totaling 202,505 design cases. Finally, the optimal design is identified based on achieving the best bandgaps coverage. The study concludes with the presentation of frequency domain acoustic pressure responses at multiple sensing points along the filters, validating the performance and the obtained bandgaps through these optimal geometries.

Funder

Natural Sciences and Engineering Research Council of Canada

Government of Canada through the Federal Economic Development Agency for Southern Ontario (FedDev Ontario) in the Waterloo Institute for Sustainable Aeronautics at the University of Waterloo

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3