Multi-Scale Detail–Noise Complementary Learning for Image Denoising

Author:

Cui Yan1ORCID,Shi Mingyue2ORCID,Jiang Jielin234ORCID

Affiliation:

1. College of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China

2. School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

4. Jiangsu Province Engineering Research Center of Advanced Computing and Intelligent Services, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Deep convolutional neural networks (CNNs) have demonstrated significant potential in enhancing image denoising performance. However, most denoising methods fuse different levels of features through long and short skip connections, easily generating a lot of redundant information, thereby weakening the complementarity of different levels of features, resulting in the loss of image details. In this paper, we propose a multi-scale detail–noise complementary learning (MDNCL) network for additive white Gaussian noise removal and real-world noise removal. The MDNCL network comprises two branches, namely the Detail Feature Learning Branch (DLB) and the Noise Learning Branch (NLB). Specifically, a loss function is applied to guide the complementary learning of image detail features and noisy mappings in these two branches. This learning approach effectively balances noise reduction and detail restoration, especially when dealing with high ratios of noise. To enhance the complementarity of features between different network layers and avoid redundant information, we designed a Feature Subtraction Unit (FSU) to capture the differences in features across the DLB network layers. Our extensive experimental evaluations demonstrate that the MDNCL approach achieves impressive denoising performance and outperforms other popular denoising methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Six Talent Peaks Project of Jiangsu Province

Publisher

MDPI AG

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3