Modeling a Wave Energy Harvester for Supplying Data Buoys

Author:

Lo Schiavo Alessandro1ORCID,Nicora Filippo2,Boragno Corrado2ORCID

Affiliation:

1. Dipartimento di Ingegneria, Università degli Studi della Campania “Luigi Vanvitelli”, 81031 Aversa, Italy

2. Dipartimento di Fisica, Università degli Studi di Genova, 16146 Genova, Italy

Abstract

An energy harvester scavenging the kinetic energy of fluctuating waves for supplying small sea monitoring buoys is studied and tested. The harvester exploits a magnetic cylinder that rolls on a track due to the pitching motion of the buoy. The electromagnetic coupling between the rolling magnet and pairs of coils placed along the track generates an electromotive force used to supply a DC load through a bridge rectifier. The considered harvester is characterized by low-cost, simplicity, lightness and efficiency. An analytical model of the harvester is presented to investigate its operating conditions and to predict its nonlinear dynamic behavior. The operating mode of the energy harvester named bang-bang is studied in depth as it allows maximizing the extracted power, and analytical equations that characterize the behavior of the harvester in this operating mode are deduced. A prototype of the energy harvester was built and tested in order to identify the model parameters and to validate the theoretical results.

Funder

European Union

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3