Investigation of Point-Contact Strategies for CFD Simulations of Pebble-Bed Reactor Cores

Author:

Goth Nolan1ORCID,Nguyen Thien1,Pointer William David1

Affiliation:

1. Oak Ridge National Laboratory, Nuclear Energy and Fuel Cycle Division, 1 Bethel Valley Rd., Oak Ridge, TN 37830, USA

Abstract

This study numerically investigated the effects of various contact strategies on the thermal hydraulic behavior within a structured bed of 100 explicitly modeled pebbles. Four contact strategies and two thermal hydraulic conditions were considered. The strategies to avoid contact singularities include decreasing the pebble diameter, increasing the pebble diameter, bridging the pebble surfaces near the contact region, and capping the pebble surfaces near the contact region. One strategy, Strategy 3a, which involves bridging with a cylinder equal to 10% of the pebble diameter, was selected as the baseline strategy because it addressed the contact singularity while minimizing the geometric changes that affect the bed porosity. The two thermal hydraulic conditions were full-power operation (Case 1) and pressurized loss of forced cooling or PLOFC (Case 2). Simulations of the conjugate heat transfer within the structured bed were performed using the Reynolds-averaged Navier–Stokes approach with the realizable k-ϵ turbulence model and two-layer all y+ wall treatment. The thermal-fluid quantities of interest were compared between the contact strategies for each case. In Case 1, the hydraulic behavior was sensitive to the contact strategy, with large differences in the pressure drop (30%) and volume-average velocity (4%). The thermal behavior was not sensitive, with less than a 0.5% difference across the strategies. To better understand the separate effects of each heat transfer mode, Case 2 was divided into the following subcases: conduction (Case 2a); conduction/radiation (Case 2b); and conduction/radiation/convection (Case 2c). Case 2a represents an early phase of the PLOFC transient. Case 2b represents an intermediate phase of the PLOFC transient, with the pebble temperatures sufficiently high for the radiative heat transfer to be non-negligible. Case 2c represents a late phase of the PLOFC transient after the establishment of the natural circulation of the heat transfer fluid. For Case 2, large differences in the contact strategy were observed only in Case 2a with only conduction. The difference in the maximum pebble temperature was 23% in Case 2a, 2% in Case 2b, and 0.3% in Case 2c.

Funder

US Department of Energy, Office of Nuclear Energy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3