Surface Albedo and Temperature Models for Surface Energy Balance Fluxes and Evapotranspiration Using SEBAL and Landsat 8 over Cerrado-Pantanal, Brazil

Author:

Angelini Lucas Peres,Biudes Marcelo SacardiORCID,Machado Nadja GomesORCID,Geli Hatim M. E.,Vourlitis George Louis,Ruhoff AndersonORCID,Nogueira José de Souza

Abstract

The determination of the surface energy balance fluxes (SEBFs) and evapotranspiration (ET) is fundamental in environmental studies involving the effects of land use change on the water requirement of crops. SEBFs and ET have been estimated by remote sensing techniques, but with the operation of new sensors, some variables need to be parameterized to improve their accuracy. Thus, the objective of this study is to evaluate the performance of algorithms used to calculate surface albedo and surface temperature on the estimation of SEBFs and ET in the Cerrado-Pantanal transition region of Mato Grosso, Brazil. Surface reflectance images of the Operational Land Imager (OLI) and brightness temperature (Tb) of the Thermal Infrared Sensor (TIRS) of the Landsat 8, and surface reflectance images of the MODIS MOD09A1 product from 2013 to 2016 were combined to estimate SEBF and ET by the surface energy balance algorithm for land (SEBAL), which were validated with measurements from two flux towers. The surface temperature (Ts) was recovered by different models from the Tb and by parameters calculated in the atmospheric correction parameter calculator (ATMCORR). A model of surface albedo (asup) with surface reflectance OLI Landsat 8 developed in this study performed better than the conventional model (acon) SEBFs and ET in the Cerrado-Pantanal transition region estimated with asup combined with Ts and Tb performed better than estimates with acon. Among all the evaluated combinations, SEBAL performed better when combining asup with the model developed in this study and the surface temperature recovered by the Barsi model (Tsbarsi). This demonstrates the importance of an asup model based on surface reflectance and atmospheric surface temperature correction in estimating SEBFs and ET by SEBAL.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3