Abstract
Floor litter can reduce the amount of water reaching the soil layer through rainfall interception. The rainfall interception capacity of floor litter varies with the physical features of the litter and rainfall characteristics. This study aimed to define the maximum and minimum interception storages (Cmx, Cmn) of litter layers using rainfall simulation experiments, and examine the effects of litter type and rainfall characteristics on rainfall retention and drainage processes that occur in the litter layer. Different types of needle-leaf and broadleaf litters were used: Abies holophylla, Pinus strobus, Pinus rigida, Quercus acutissima, Quercus variabilis, and Sorbus alnifolia. Our results indicate a wide variation in interception storage values of needle leaf litter, regardless of the rainfall intensity and duration. The A. holophylla needle-leaf litter showed the highest Cmx and Cmn values owing to its short length and low porosity. Conversely, the lowest interception storage values were determined for the P. strobus needle leaf litter. No significant differences in interception storage were established for the broadleaf litter. Moreover, except for A. holophylla litter, the broadleaf litter retained more water than the needle leaf litter. An increase in the intensity or duration of rainfall events leads to an increase in the water retention storage of litter. However, these factors do not influence the litter’s drainage capacity, which depends primarily on the force of gravity.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献