A New Third-Order Family of Multiple Root-Findings Based on Exponential Fitted Curve

Author:

Kanwar Vinay1ORCID,Cordero Alicia2ORCID,Torregrosa Juan R.2ORCID,Rajput Mithil3,Behl Ramandeep4ORCID

Affiliation:

1. University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India

2. Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain

3. Indian Institute of Technology, Kharagpur 721302, India

4. Mathematical Modelling and Applied Computation Research Group (MMAC), Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract

In this paper, we present a new third-order family of iterative methods in order to compute the multiple roots of nonlinear equations when the multiplicity (m≥1) is known in advance. There is a plethora of third-order point-to-point methods, available in the literature; but our methods are based on geometric derivation and converge to the required zero even though derivative becomes zero or close to zero in vicinity of the required zero. We use the exponential fitted curve and tangency conditions for the development of our schemes. Well-known Chebyshev, Halley, super-Halley and Chebyshev–Halley are the special members of our schemes for m=1. Complex dynamics techniques allows us to see the relation between the element of the family of iterative schemes and the wideness of the basins of attraction of the simple and multiple roots, on quadratic polynomials. Several applied problems are considered in order to demonstrate the performance of our methods and for comparison with the existing ones. Based on the numerical outcomes, we deduce that our methods illustrate better performance over the earlier methods even though in the case of multiple roots of high multiplicity.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference25 articles.

1. Über unendlich viele Algorithmen zur Auflösung der Gleichungen;Math. Ann.,1870

2. Convergence of Schröder’s method for polynomial zeros of unknown multiplicity;Proinov;C. R. Acad. Bulg. Sci.,2013

3. On the numerical solution of equations;Obreshkov;Annuaire Univ. Sofia Fac. Sci. Phys. Math.,1963

4. Traub, J.F. (1964). Iterative Methods for the Solution of Equations, Prentice-Hall Series in Automatic Computation.

5. On the convergence of Chebyshev’s method for multiple polynomial zeros;Ivanov;Results. Math.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3