A Machine Learning Study of High Robustness Quantum Walk Search Algorithm with Qudit Householder Coins

Author:

Tonchev Hristo12ORCID,Danev Petar2ORCID

Affiliation:

1. Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussée, 1784 Sofia, Bulgaria

2. Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussée, 1784 Sofia, Bulgaria

Abstract

In this work, the quantum random walk search algorithm with a walk coin constructed by generalized Householder reflection and phase multiplier has been studied. The coin register is one qudit with an arbitrary dimension. Monte Carlo simulations, in combination with supervised machine learning, are used to find walk coins that make the quantum algorithm more robust to deviations in the coin’s parameters. This is achieved by introducing functional dependence between these parameters. The functions that give the best performance of the algorithm are studied in detail by numerical statistical methods. A thorough comparison between our modification and an algorithm, with coins made using only Householder reflection, shows significant advantages of the former. By applying a deep neural network, we make a prediction for the parameters of an optimal coin with an arbitrary size and estimate the algorithm’s stability for such a coin.

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference54 articles.

1. Quantum random walks;Aharonov;Phys. Rev. A,1993

2. Lawler, G.F., and Limic, V. (2010). Random Walk: A Modern Introduction, Cambridge University Press. Cambridge Studies in Advanced Mathematics.

3. Implementing the quantum random walk;Travaglione;Phys. Rev. A,2002

4. Ambainis, A., Kempe, J., and Rivosh, A. (2004). Coins Make Quantum Walks Faster. arXiv.

5. Analysis of random walks on a hexagonal lattice;Macci;IMA J. Appl. Math.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3