Learning Effective Geometry Representation from Videos for Self-Supervised Monocular Depth Estimation

Author:

Zhao Hailiang1ORCID,Kong Yongyi1,Zhang Chonghao1ORCID,Zhang Haoji1,Zhao Jiansen1ORCID

Affiliation:

1. Merchant Marine College, Shanghai Maritime University, Shanghai 200135, China

Abstract

Recent studies on self-supervised monocular depth estimation have achieved promising results, which are mainly based on the joint optimization of depth and pose estimation via high-level photometric loss. However, how to learn the latent and beneficial task-specific geometry representation from videos is still far from being explored. To tackle this issue, we propose two novel schemes to learn more effective representation from monocular videos: (i) an Inter-task Attention Model (IAM) to learn the geometric correlation representation between the depth and pose learning networks to make structure and motion information mutually beneficial; (ii) a Spatial-Temporal Memory Module (STMM) to exploit long-range geometric context representation among consecutive frames both spatially and temporally. Systematic ablation studies are conducted to demonstrate the effectiveness of each component. Evaluations on KITTI show that our method outperforms current state-of-the-art techniques.

Funder

National Key Research and Development Program, China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3