Unraveling the Genetic Control of Pigment Accumulation in Physalis Fruits

Author:

Zhao Wennan1,Wu Haiyan1,Gao Xiaohan1,Cai Huimei1,Zhang Jiahui1,Zhao Chunbo1,Chen Weishu1,Qiao Hongyu1,Zhang Jingying1

Affiliation:

1. Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China

Abstract

Physalis pubescens and Physalis alkekengi, members of the Physalis genus, are valued for their delicious and medicinal fruits as well as their different ripened fruit colors—golden for P. pubescens and scarlet for P. alkekengi. This study aimed to elucidate the pigment composition and genetic mechanisms during fruit maturation in these species. Fruit samples were collected at four development stages, analyzed using spectrophotometry and high-performance liquid chromatography (HPLC), and complemented with transcriptome sequencing to assess gene expression related to pigment biosynthesis. β-carotene was identified as the dominant pigment in P. pubescens, contrasting with P. alkekengi, which contained both lycopene and β-carotene. The carotenoid biosynthesis pathway was central to fruit pigmentation in both species. Key genes pf02G043370 and pf06G178980 in P. pubescens, and TRINITY_DN20150_c1_g3, TRINITY_DN10183_c0_g1, and TRINITY_DN23805_c0_g3 in P. alkekengi were associated with carotenoid production. Notably, the MYB-related and bHLH transcription factors (TFs) regulated zeta-carotene isomerase and β-hydroxylase activities in P. pubescens with the MYB-related TF showing dual regulatory roles. In P. alkekengi, six TF families—bHLH, HSF, WRKY, M-type MADS, AP2, and NAC—were implicated in controlling carotenoid synthesis enzymes. Our findings highlight the intricate regulatory network governing pigmentation and provide insights into Physalis germplasm’s genetic improvement and conservation.

Funder

The Key Core Technology Demonstration and Promotion Project of Jilin Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3