Tityus stigmurus-Venom-Loaded Cross-Linked Chitosan Nanoparticles Improve Antimicrobial Activity

Author:

Gláucia-Silva Fiamma1,Torres João Vicente Pereira1ORCID,Torres-Rêgo Manoela12,Daniele-Silva Alessandra1,Furtado Allanny Alves1,Ferreira Sarah de Sousa1,Chaves Guilherme Maranhão3ORCID,Xavier-Júnior Francisco Humberto4ORCID,Rocha Soares Karla Samara14,Silva-Júnior Arnóbio Antônio da1ORCID,Fernandes-Pedrosa Matheus de Freitas1

Affiliation:

1. Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil

2. Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal 59012-570, Brazil

3. Laboratory of Medical and Molecular Micology, Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil

4. Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraiba, Campus Universitário I, Castelo Branco III, Cidade Universitária, João Pessoa 58051-900, Brazil

Abstract

The rapid resistance developed by pathogenic microorganisms against the current antimicrobial pool represents a serious global public health problem, leading to the search for new antibiotic agents. The scorpion Tityus stigmurus, an abundant species in Northeastern Brazil, presents a rich arsenal of bioactive molecules in its venom, with high potential for biotechnological applications. However, venom cytotoxicity constitutes a barrier to the therapeutic application of its different components. The objective of this study was to produce T. stigmurus-venom-loaded cross-linked chitosan nanoparticles (Tsv/CN) at concentrations of 0.5% and 1.0% to improve their biological antimicrobial activity. Polymeric nanoparticles were formed with a homogeneous particle size and spherical shape. Experimental formulation parameters were verified in relation to mean size (<180 nm), zeta potential, polydispersity index and encapsulation efficiency (>78%). Tsv/CN 1.0% demonstrated an ability to increase the antimicrobial venom effect against Staphylococcus aureus bacteria, exhibiting an MIC value of 44.6 μg/mL. It also inhibited different yeast species of the Candida genus, and Tsv/CN 0.5% and 1.0% led to a greater inhibitory effect of C. tropicalis and C. parapsilosis strains, presenting MIC values between 22.2 and 5.5 µg/mL, respectively. These data demonstrate the biotechnological potential of these nanosystems to obtain a new therapeutic agent with potential antimicrobial activity.

Funder

National Council for Scientific and Technological Development

Brazilian Agencies of Coordination of Improvement and Evaluation of Graduate Studies

CAPES

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3