Proteomics Studies on Extracellular Vesicles Derived from Glioblastoma: Where Do We Stand?

Author:

Giuliani Patricia12,De Simone Chiara12,Febo Giorgia12,Bellasame Alessia12,Tupone Nicola23,Di Virglio Vimal23,di Giuseppe Fabrizio23,Ciccarelli Renata2ORCID,Di Iorio Patrizia12,Angelucci Stefania34

Affiliation:

1. Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy

2. Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy

3. Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy

4. Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy

Abstract

Like most tumors, glioblastoma multiforme (GBM), the deadliest brain tumor in human adulthood, releases extracellular vesicles (EVs). Their content, reflecting that of the tumor of origin, can be donated to nearby and distant cells which, by acquiring it, become more aggressive. Therefore, the study of EV-transported molecules has become very important. Particular attention has been paid to EV proteins to uncover new GBM biomarkers and potential druggable targets. Proteomic studies have mainly been performed by “bottom-up” mass spectrometry (MS) analysis of EVs isolated by different procedures from conditioned media of cultured GBM cells and biological fluids from GBM patients. Although a great number of dysregulated proteins have been identified, the translation of these findings into clinics remains elusive, probably due to multiple factors, including the lack of standardized procedures for isolation/characterization of EVs and analysis of their proteome. Thus, it is time to change research strategies by adopting, in addition to harmonized EV selection techniques, different MS methods aimed at identifying selected tumoral protein mutations and/or isoforms due to post-translational modifications, which more deeply influence the tumor behavior. Hopefully, these data integrated with those from other “omics” disciplines will lead to the discovery of druggable pathways for novel GBM therapies.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3