Current Trends, Challenges, and Future Research Directions of Hybrid and Deep Learning Techniques for Motor Imagery Brain–Computer Interface

Author:

Lionakis Emmanouil1,Karampidis Konstantinos1ORCID,Papadourakis Giorgos1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, School of Engineering, Hellenic Mediterranean University, 71004 Heraklion, Crete, Greece

Abstract

The field of brain–computer interface (BCI) enables us to establish a pathway between the human brain and computers, with applications in the medical and nonmedical field. Brain computer interfaces can have a significant impact on the way humans interact with machines. In recent years, the surge in computational power has enabled deep learning algorithms to act as a robust avenue for leveraging BCIs. This paper provides an up-to-date review of deep and hybrid deep learning techniques utilized in the field of BCI through motor imagery. It delves into the adoption of deep learning techniques, including convolutional neural networks (CNNs), autoencoders (AEs), and recurrent structures such as long short-term memory (LSTM) networks. Moreover, hybrid approaches, such as combining CNNs with LSTMs or AEs and other techniques, are reviewed for their potential to enhance classification performance. Finally, we address challenges within motor imagery BCIs and highlight further research directions in this emerging field.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3