Abstract
This paper presents and implements a novel remote attestation method to ensure the integrity of a device applicable to decentralized infrastructures, such as those found in common edge computing scenarios. Edge computing can be considered as a framework where multiple unsupervised devices communicate with each other with lack of hierarchy, requesting and offering services without a central server to orchestrate them. Because of these characteristics, there are many security threats, and detecting attacks is essential. Many remote attestation systems have been developed to alleviate this problem, but none of them can satisfy the requirements of edge computing: accepting dynamic enrollment and removal of devices to the system, respecting the interrupted activity of devices, and last but not least, providing a decentralized architecture for not trusting in just one Verifier. This security flaw has a negative impact on the development and implementation of edge computing-based technologies because of the impossibility of secure implementation. In this work, we propose a remote attestation system that, through using a Trusted Platform Module (TPM), enables the dynamic enrollment and an efficient and decentralized attestation. We demonstrate and evaluate our work in two use cases, attaining acceptance of intermittent activity by IoT devices, deletion of the dependency of centralized verifiers, and the probation of continuous integrity between unknown devices just by one signature verification.
Funder
European Union’s Horizon 2020 Research and Innovation program
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference41 articles.
1. Cisco Annual Internet Report (2018–2023) White Paper;Cisco,2020
2. Edge Computing: Vision and Challenges
3. A Survey on Secure Data Analytics in Edge Computing
4. Mobile edge computing, Fog et al.: A survey and analysis of security threats and challenges
5. ISG; ETSI; GMI; Mobile Edge Computing; Market Acceleration; MEC Metrics Best Practice and Guidelines
https://www.etsi.org/deliver/etsi_gs/MEC-IEG/001_099/006/01.01.01_60/gs_MEC-IEG006v010101p.pdf
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献